If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+13=36
We move all terms to the left:
2x^2+13-(36)=0
We add all the numbers together, and all the variables
2x^2-23=0
a = 2; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·2·(-23)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{46}}{2*2}=\frac{0-2\sqrt{46}}{4} =-\frac{2\sqrt{46}}{4} =-\frac{\sqrt{46}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{46}}{2*2}=\frac{0+2\sqrt{46}}{4} =\frac{2\sqrt{46}}{4} =\frac{\sqrt{46}}{2} $
| 9-11p=-2p-15-9p | | –8u−10=–9u | | -5/6e-2/3e=-245 | | 1.5x-2=0.875 | | 16-3x=-5x-2 | | 3u+13=52 | | -3y-5(35/11)=-19 | | 3(x+2)^2-12=180 | | 6a-(5-a)=5a-13 | | 8(3x-2)=-32 | | 7=1/5n | | 2y-5y+3(y-2)=29 | | -11q-11-18=-11q-6 | | 12x+9x+75^0=180^0 | | 3v=4v−6 | | -15c-12c-–19c+–6c=–14 | | 2(z-99)=-32 | | d/2.15=48. | | 19=11-2r | | x+3=x+75 | | 7p−(−5)+(−1=) | | 4+8(x-2)=44;x=6 | | 6^(x+2)=5 | | 11=9+n/10 | | 12x+9x+105^0=180^0 | | x+7=-2+4x | | 3r−2=4r | | 21=a+11 | | 30=3b+15 | | -6a-(4a-3)=83 | | 2d−d=13 | | 69.5+10x-4=180 |